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ABSTRACT 

The odd-even staggering of even Z- even N nuclei for A=130-200 mass region are studied. The 
variation of staggering factor S(J) with spin (J) and R4/2 ratios are illustrated. The effect of 

γ2E  with 

product of number of valence proton and valence neutron NpNn is also illustrated. A small change in 
the  - band staggering between spherical to well-deformed limits seems to be connected to the shape 

phase transition in this region. PACS number: 21.60Ev, 27.60.+j 
 
 
INTRODUCTION 
 
The unity of the nucleon- nucleon interaction 
in the diversity of spectra of atomic nuclei is 
major objective of nuclear theory. The nuclei 
around A=130-200 region has been studied by 
various workers [1-4] using various models 
over the last four decades. The γ -   

independent potential V=V  β for the 
collective structure by Wilets and Jean [3] 
which modified anharmonic oscillator, 
expressed as 1)λ(λE λJ   with J-

degeneracy. Here the levels of γ -band are 

grouped as ),4(3,2 212
  act as a part of the 

λ -multiplets ),6,4,3(0),,2(4 ,2 1212211
  in 

contrast to the rigid triaxial rotor (RTR) 

pattern of ).,5(4),,3(2 1212
 The anharmonic 

vibrator split multiplets (n=2 triplet 4+, 2+, 0+,  
the n=3 quintuplet: 6+, 4+, 3+, 2+, 0+ ) [5] 

except that the 0  states are raised. 
An axially symmetric potential was considered 
using a harmonic oscillator potential with a 

minimum at γ = ο0 by Bohr and Mottelson [1] 
yield predictions for the axially symmetric 
deformed rotor. In the theoretical approach of 
the interacting boson model [IBM] [4], band 
structure belongs to three symmetries of U(6) 
algebra i.e. SU(5), O(6) and SU(3), 
corresponding to anharmonic vibrator, γ -

unstable and deformed rotor. The γ -soft 
region between the vibrator and a deformed 

structure corresponds the SU(5) to O(6) 
transition [4]. This region contain the critical 
point symmetry E(5) [6]. The axially γ -rigid 
region between the vibrator and the axially 
symmetric rotor is the SU(5) to SU(3) 
transition region in which a first- order phase 
transition occurs [7] and is described by the 
critical point X(5) [8]. The relative spacing of 
the odd-even spin(J) level in γ -bands differ 
those of a deformed rotor, which is termed as 
the odd-even staggering (OES) as stated 
above. Casten and Brentano [9] noted the 
large OES for A=130 isotopes of Xe and Ba 
(N<82) comparable to the broken O(6) 
symmetry. The odd-even staggering (OES) 
was studied by a host of workers [9-15]. The 

structure of the  2K  gamma vibrational 
bands and the quasi-gamma bands of even Z- 
even N nuclei is investigated on a global scale 
[5]. Recently E.A. McCutchan et al. [16] 
studied the staggering in band energies and the 
transition between different structural 
symmetries in nuclei. The aim of the present 
work is to study band structure of A=130-200 
nuclei in terms of Bohr Mottelson and 
different perspective of the OES.  
 
CALCULATION 
 
Odd even staggering (OES) in γ -bands are 
studied by using the equation [16] 
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Therefore using equation (1) we calculated the 
value of staggering constant S(J) for different 
nuclei. 
 
RESULTS AND DISCUSSION 
 
Variation of S(J) with Spin(J)  
 We plot graph of S(J) vs. spin(J ), separate for 
each regions. In Fig.1 Ba nuclei show identical 
behavior for both negative and positive 
staggering. Next in Fig.2 Er nuclei show the 
constant staggering with spin (J). In 158-168Er 
show good negative and positive staggering 
with increase in S(J) therefore S(J) is 
progressively larger for increasing Z, the 
decreasing number of hole bosons (Np and Nn) 
resulting in shape transition in term of IBM. 
Also 130Ba, 156Gd, 164Er, 166,170Yb and 182Os are 
clear cut examples of nuclei for which the S(J) 
sign is changing alternatively [17]. 
 
Variation of 

γ2E with neutron 

number np NN  

We have divided the mass region in major 
shell space of Z=50-82, N=82-126 in four 
quadrants [18]. The quadrants I and III have 
particle-particle (p-p) and hole-hole (h-h) 
bosons, respectively, and II, IV are of p-h 
bosons.  In N<82 region (quadrant-IV), the 
energy of 

γ2E  decreases smoothly with 

increasing NpNn (see Fig.3). These neutron 
deficient nuclei are  -soft nuclei and 

γ2E energy decreases with NpNn and lies on 

an exponential curve: 
                Y = Y0 + A exp(B*X)    …(2) 
Here A, B and Y0 are obtained by least – 
square (LS) fit of Eq. (2) [19], in which one 
has to start with approximate values of A, B 
and Y0. In quadrant-I of N>82 region, value of 
NpNn starts right from 2 therefore these nuclei 
are axially symmetric.  In 146-150Sm nuclei R4/2 

ratio is 2.1 hence nuclei are vibrational. After 
shape transition, R4/2 ratio increases and 
energy decreases due to which nuclei become 
axially symmetric for large value of NpNn. 
Hence with increasing NpNn the collectivity 
increases (see Fig.4), because collectivity 
depends upon product of valence proton and 

valence neutron NpNn. Next in  N≤104 region 
(quadrant-II), the Er, Yb, Hf, W and Os nuclei 
show exponential rise with NpNn  (see Fig.5),  
because with increasing the neutron number 
R4/2 ratio  increases i.e. R4/2=3.3  and hence 
deformation  also increases therefore these 
nuclei show rotational character. In N≥104 
region (quadrant-III), the datum of Pt nuclei 
lies below the curve at low value of NpNn (see 
Fig.6), because value of R4/2 ratio is 2.5 and do 
not get deformed at low value of NpNn. In Hf, 
W and Os nuclei R4/2 =3.3 and also with 
increasing the number of proton pairs these 
nuclei behave as  good rotor and show 
surprisingly rise in the value of 

γ2E  with 

increasing  product of valence proton and 
neutron pair indicating the rapid buildup of the 
collectivity as both pN and nN  grow in the 

valence shell. 
 
Variation of S(J) with R4/2 ratio 
When we see the variation of S(J) with R4/2 
(see Fig.7) then even staggering factor S(4), 
S(6) and S(8) will attain negative value and 
odd staggering factor such as S(5), S(7) and 
S(9) has positive value. The R4/2 ratio lies 
between 2.4-2.9 which means nuclei are in the 
range of O(6) and  X(5) symmetry. When R4/2 
is 2.4 then S(4) = -0.5 and S(5) = 0.5 in case 
of Ba  nuclei. When R4/2 goes towards the 
X(5) symmetry then value of S(8) becomes 
equal to  -2.8 which is minimum value, but in 
other side value at same R4/2, S(7) attains 
maximum value of staggering factor i.e S(J)= 
2.7. Hence these nuclei attain the oscillatory 
motion.  Next when graph is plotted for S(J) 
vs. R4/2 for Er nuclei (see Fig.8) then all 
positive and negative staggering show rise 
with R4/2 ratio, because deformation increases 
with increase in R4/2 ratio. At R4/2 = 3.3 all 
nuclei behave axially symmetric and attain 
maximum value i.e. S(J)= 0.4. 
 
CONCLUSION 
 
In the present work we find that the odd-even 
staggering (OES) in the γ -bands help to 
distinguish between its rigid triaxial rotor and 
γ -soft vibrator or the O(6) symmetry. In the 
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triaxial rotor case, levels appears in doublets 

as ),3(2 γγ
 , ),5(4 γγ

 , ),7(6 γγ
  where as the 

γ -independent O(6) case leads to a  

),6(5 ),,4(3,2 γγγγγ
 staggering [20]. 

Staggering is first considered as the function 
of angular momentum. The Ba and Er nuclei 
show staggering with even spin and show 
smooth staggering with spin (J). Therefore 
nuclei show increase in the value of S(J) for 
higher states of spin (J). The variation of γ -

band is also shown with np NN  across the 

major shell N=82-126. The variation of 

γ2E for N<82 and N>82 region show smooth 

fall with np NN . On the other hand variation 

of 
γ2E for N≤104 and N≥104 region show 

exponential rise with NpNn. The variation of 
S(J) with R4/2 signify a smooth shape 
transition from spherical to well- deformed 
nuclei. Therefore S(J) represents the shape 
effect with R4/2  and NpNn, hence gamma band 
is presented in terms of shape transition. 
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Fig. 1. The experimental S(J) for Ba nuclei show alternately zigzag behavior for odd and even 
spins. 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

-8

-6

-4

-2

0

2

4

6

8

10

12

 
 

Er

S
(J

)

J

 158
 160
 162
 164
 166
 168
 170

 
Fig. 2. Same as in fig.1, but for Er nuclei. 
 
 
 
 
 



 [100]

4 6 8 10 12 14 16 18 20

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

B =-0.1788

 

 

 

 
γ2

E

 Xe
 Ba
 Ce
 Nd

N
p
N

n

N<82

Y
0= 0.8009

A =1.0808

 
Fig.3  Plot of 

γ2E vs. NpNn for N<82 region. 

0 10 20 30 40 50 60

0.8

1.0

1.2

1.4

1.6

B = 0.2992
A = -0.004

  

 

 
γ2

E
 Ba
 Ce
 Nd
 Sm
 Gd
 Dy

N
p
N

n

N>82

Y
0
=1.5471

 
Fig.4  Plot of 

γ2E vs. NpNn for N>82 region. 
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Fig.5  Plot of 

γ2E vs. NpNn for N≤104 region. 
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Fig.6  Plot of 

γ2E vs. NpNn for N≥104 region. 
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Fig.7  The experimental S(J)  vs. R4/2 for Ba nuclei. 
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Fig.8  The experimental S(J) vs. R4/2 for Er nuclei. 


